Consistency of Spectral Hypergraph Partitioning under Planted Partition Model

نویسندگان

  • DEBARGHYA GHOSHDASTIDAR
  • AMBEDKAR DUKKIPATI
چکیده

Hypergraph partitioning lies at the heart of a number of problems in machine learning and network sciences. A number of algorithms exist in the literature that extend standard approaches for graph partitioning to the case of hypergraphs. However, theoretical aspects of such methods have seldom received attention in the literature as compared to the extensive studies on the guarantees of graph partitioning. For instance, consistency results of spectral clustering under the planted partition or stochastic blockmodel are well-known (Rohe et al., 2011; Lei and Rinaldo, 2015). In this paper, we present a planted partition model for sparse random non-uniform hypergraphs that generalizes the stochastic blockmodels for graphs and uniform hypergraphs. We derive an asymptotic error bound of a spectral hypergraph partitioning algorithm under this model using matrix Bernstein inequality. To the best of our knowledge, this is the first consistency result related to partitioning non-uniform hypergraphs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uniform Hypergraph Partitioning: Provable Tensor Methods and Sampling Techniques

Graph partitioning plays a central role in machine learning, and the development of graph partitioning algorithms is still an active area of research. The immense demand for such algorithms arises due to the abundance of applications that involve pairwise interactions or similarities among entities. Recent studies in computer vision and databases systems have emphasized on the necessity of cons...

متن کامل

Consistency of Spectral Partitioning of Uniform Hypergraphs under Planted Partition Model

Spectral graph partitioning methods have received significant attention from both practitioners and theorists in computer science. Some notable studies have been carried out regarding the behavior of these methods for infinitely large sample size (von Luxburg et al., 2008; Rohe et al., 2011), which provide sufficient confidence to practitioners about the effectiveness of these methods. On the o...

متن کامل

A Provable Generalized Tensor Spectral Method for Uniform Hypergraph Partitioning

Matrix spectral methods play an important role in statistics and machine learning, and most often the word ‘matrix’ is dropped as, by default, one assumes that similarities or affinities are measured between two points, thereby resulting in similarity matrices. However, recent challenges in computer vision and text mining have necessitated the use of multi-way affinities in the learning methods...

متن کامل

Spectral Partitiong in a Stochastic Block Model

In this lecture, we will perform a crude analysis of the performance of spectral partitioning algorithms in what are called stochastic block models or a planted partition model. The name you choose largely depends on your community and application. As we are especially interested today in partitioning, we will call it the planted partition model. In this model, we build a random graph that has ...

متن کامل

Revisiting Hypergraph Models for Sparse Matrix Partitioning

We provide an exposition of hypergraph models for parallelizing sparse matrix-vector multiplies. Our aim is to emphasize the expressive power of hypergraph models. First, we set forth an elementary hypergraph model for parallel matrix-vector multiply based on one-dimensional (1D) matrix partitioning. In the elementary model, the vertices represent the data of a matrix-vector multiply, and the n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015